
Pointers, Arrays and Structures

Many more applications…

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Pointers & Arrays

3

Pointers and Arrays

When an array is declared:

• The compiler allocates a base address and sufficient amount of storage to contain all the

elements of the array in contiguous memory locations.

• The base address is the location of the first element (index 0) of the array.

• The compiler also defines the array name as a constant pointer to the first element.

4

Example

Consider the declaration:

int x[5] = {1, 2, 3, 4, 5};

• Suppose that the base address of x is 2500, and each integer requires 4 bytes.

Element Value Address

x[0] 1 2500

x[1] 2 2504

x[2] 3 2508

x[3] 4 2512

x[4] 5 2516

5

Example (contd)

Both x and &x[0] have the value 2500.

p = x; and p = &x[0]; are equivalent

• We can access successive values of x by using p++ or p-- to move from one element to

another.

Relationship between p and x:

p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516

*(p+i) gives the value of x[i]

6

Arrays and pointers

• An array name is an address, or a pointer value.

• Pointers as well as arrays can be subscripted.

• A pointer variable can take different addresses as values.

• An array name is an address, or pointer, that is fixed.

• It is a CONSTANT pointer to the first element.

7

Arrays
Consequences:

• ar is a pointer

• ar[0] is the same as *ar

• ar[2] is the same as *(ar+2)

• We can use pointer arithmetic to access arrays more

conveniently.

Declared arrays are only allocated while the scope is valid

char *foo() {

char string[32];

return string;

} This is incorrect

char *foo() {

char *string;

string = malloc(32); // Dynamic memory allocation

return string;

} This is okay

8

Strings

•1-d arrays of type char

•By convention, a string in C is terminated by the end-of-string sentinel
‘\0’ (null character)

•char s[21] - can have variable length string delimited with \0

• Max length of the string that can be stored is 20 as the size

must include storage needed for the ‘\0’

•String constants : “hello”, “abc”

•“abc” is a character array of size 4

9

String Constant

•A string constant is treated as a pointer

•Its value is the base address of the string

char *p = “abc”;

printf (“%s %s\n”,p,p+1); /* abc bc is printed */

a b c \0p

10

Arrays In Functions

An array parameter can be declared as an array or a pointer; an array argument can be

passed as a pointer

int strlen(char s[])

{

}

int strlen(char *s)

{

}

11

Arrays and pointers

int a[20], i, *p;

The expression a[i] is equivalent to *(a+i)

p[i] is equivalent to *(p+i)

When an array is declared the compiler allocates a sufficient amount of contiguous space in

memory. The base address of the array is the address of a[0].

Suppose the system assigns 300 as the base address of a. a[0], a[1], ...,a[19] are allocated

300, 304, ..., 376.

12

Arrays and pointers

#define N 20

int a[2N], i, *p, sum;

p = a; is equivalent to p = *a[0];

p is assigned 300.

Pointer arithmetic provides an alternative to array indexing.

p=a+1; is equivalent to p=&a[1]; (p is assigned 304)

for (p=a; p<&a[N]; ++p)

sum += *p ;

p=a;

for (i=0; i<N; ++i)

sum += p[i] ;
for (i=0; i<N; ++i)

sum += *(a+i) ;

13

Arrays and pointers

int a[N];

a is a constant pointer.

a=p; ++a; a+=2; illegal

14

Differences : Array & Pointers

char *p = “abcde”;

The compiler allocates space
for p, puts the string
constant “abcde” in memory
somewhere else, initializes p
with the base address of the
string constant

char s[] = “abcde”;

 char s[] = {‘a’,’b’,’c’,’d’,’e’.’\0’};

The compiler allocates 6 bytes of

memory for the array s which are

initialized with the 6 characters

a b c d e \0

a b c d e \0

p

S

15

Pointer arithmetic and element size

double * p, *q ;

The expression p+1 yields the correct machine address for the next variable of that type.

Other valid pointer expressions:

• p+i

• ++p

• p+=i

• p-q /* No of array elements between p and q */

16

Pointer Arithmetic

Since a pointer is just a mem address, we can add to it to traverse an array.

p+1 returns a ptr to the next array element.

(*p)+1vs *p++ vs *(p+1)vs *(p)++?

• x = *p++ x = *p ; p = p + 1;

• x = (*p)++ x = *p ; *p = *p + 1;

What if we have an array of large structs (objects)?

• C takes care of it: In reality, p+1 doesn’t add 1 to the memory address, it adds the size of

the array element.

17

Pointer Arithmetic

We can use pointer arithmetic to “walk” through memory:

° C automatically adjusts the pointer by the right amount each time (i.e., 1 byte for a char,

4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {

int i;

for (i=0; i<n; i++) *to++ = *from++;

}

18

Arrays of Structures

We can define an array of structure records as

struct stud class[100];

The structure elements of the individual records can be accessed as:

class[i].roll

class[20].dept_code

class[k++].cgpa

Pointers and Structures

Once ptr points to a structure variable, the members can be accessed as:

ptr –> roll;

ptr –> dept_code;

ptr –> cgpa;

• The symbol “–>” is called the arrow operator.

1
9

20

A Warning

When using structure pointers, we should take care of operator precedence.

• Member operator “.” has higher precedence than “*”.

ptr –> roll and (*ptr).roll mean the same thing.

*ptr.roll will lead to error.

• The operator “–>” enjoys the highest priority among operators.

++ptr –> roll will increment roll, not ptr.

(++ptr) –> roll will do the intended thing.

21

Use of pointers to structures

#include <stdio.h>

struct complex {

float real;

float imag;

};

main()

{

struct complex a, b, c;

scanf (“%f %f”, &a.real, &a.imag);

scanf (“%f %f”, &b.real, &b.imag);

add(&a, &b, &c) ;

printf (“\n %f %f”, c,real, c.imag);

}

void add (x, y, t)

struct complex *x, *y, *t;

{

t->re = x->real + y->real;

t->im = x->imag + y->imag;

}

22

1. Write a function to search for an element in an array of integers that returns 1 if the element

is found, 0 otherwise. If found, it also returns the index in the array where found

2. Write a function that returns the number of lowercase letters, uppercase letters, and digit

characters in a string

3. Define a structure POINT to store the coordinates (integer) of a point in 2-d plane. Write a

function that returns the two farthest (largest distance) points in an array of POINT structures

4. Write a function that takes two arrays of integers A and B and returns the size of the union

set and the size of the intersection set of A and B

5. Write a function that returns the lengths of the largest palindromes formed by any substring

(sequence of consecutive characters) of the string. It should also return the index in the

string from which the palindrome starts.

For all of the above, add suitable main() functions to call the functions. Also, decide on what

parameters you will need; for better practice, for all problems other than problems 1, assume that

the return type of the function is void.

Practice Problems

